version: '3.3'
services:
services:
testcassandra:
image: cassandra:3.11 # or latest
environment:
- HEAP_NEWSIZE=256M
- MAX_HEAP_SIZE=1G
- "JVM_OPTS=-XX:+PrintGCDateStamps"
- CASSANDRA_BROADCAST_ADDRESS
ports:
- "9042:9042"
testscylla:
image: scylladb/scylla:4.5.1 # because latest 4.6 is broken
command: --smp 2 --memory 1G --overprovisioned 1 --api-address 0.0.0.0 --developer-mode 1
ports:
- 19042:9042
# - 9142:9142
# - 7000:7000
# - 7001:7001
# - 7199:7199
# - 10000:10000
# scylla-manager:
# image: scylladb/scylla-manager
# depends_on:
# - testscylla
Using docker we can create spawn multiple nodes to test NetworkTopologyStrategy, consistency level, and replication factor (or even multiple datacenter):
docker run --name NodeX -d scylladb/scylla:4.5.1
docker run --name NodeY -d scylladb/scylla:4.5.1 --seeds="$(docker inspect --format='{{ .NetworkSettings.IPAddress }}' NodeX)"
docker run --name NodeZ -d scylladb/scylla:4.5.1 --seeds="$(docker inspect --format='{{ .NetworkSettings.IPAddress }}' NodeX)"
docker exec -it NodeZ nodetool status
# wait for UJ (up joining) became UN (up normal)
docker run --name NodeY -d scylladb/scylla:4.5.1 --seeds="$(docker inspect --format='{{ .NetworkSettings.IPAddress }}' NodeX)"
docker run --name NodeZ -d scylladb/scylla:4.5.1 --seeds="$(docker inspect --format='{{ .NetworkSettings.IPAddress }}' NodeX)"
docker exec -it NodeZ nodetool status
# wait for UJ (up joining) became UN (up normal)
Since I failed to run latest ScyllaDB (so we use 4.5). To install cqlsh locally, you can use this command:
pip3 install cqlsh
cqlsh 127.0.0.1 9042 # cassandra
cqlsh 127.0.0.1 19042 # scylladb
cqlsh 127.0.0.1 19042 # scylladb
node=`docker ps | grep /scylla: | head -n 1 | cut -f 1 -d ' '`
docker exec -it $node cqlsh # using cqlsh inside scylladb
# ^ must wait 30s+ before docker ready
docker exec -it $node nodetool status
# ^ show node status
# ^ must wait 30s+ before docker ready
docker exec -it $node nodetool status
# ^ show node status
As we already know, Cassandra is columnar database, that we have to make a partition key (where the rows will be located) and clustering key (ordering of that data inside the partition), the SSTable part works similar to Clickhouse merges.
To create a keyspace (much like a "database" or collection of tables but we can set replication region), use this command:
CREATE KEYSPACE my_keyspace WITH replication = {'class':
'SimpleStrategy', 'replication_factor': 1};
-- ^ single node
-- {'class' : 'NetworkTopologyStrategy', 'replication_factor': '3'};
-- ^ multiple node but in a single datacenter and/or rack
-- {'class' : 'NetworkTopologyStrategy', 'DC1': '3', 'DC2': '3'};
-- ^ multiple datacenter
USE my_keyspace;
CONSISTENCY; -- how many read/write ack
-- ANY
-- ONE, TWO, THREE
-- LOCAL_ONE
-- QUORUM = replication_factor / 2 + 1
-- LOCAL_QUORUM
-- EACH_QUORUM -- only for write
-- ALL -- will failed if nodes < replication_factor
CONSISTENCY new_level;
-- ^ single node
-- {'class' : 'NetworkTopologyStrategy', 'replication_factor': '3'};
-- ^ multiple node but in a single datacenter and/or rack
-- {'class' : 'NetworkTopologyStrategy', 'DC1': '3', 'DC2': '3'};
-- ^ multiple datacenter
USE my_keyspace;
CONSISTENCY; -- how many read/write ack
-- ANY
-- ONE, TWO, THREE
-- LOCAL_ONE
-- QUORUM = replication_factor / 2 + 1
-- LOCAL_QUORUM
-- EACH_QUORUM -- only for write
-- ALL -- will failed if nodes < replication_factor
CONSISTENCY new_level;
To create a table with same partition key and clustering/ordering key:
CREATE TABLE users ( -- or TYPE for custom type, [keyspace.]
fname text,
fname text,
lname text,
title text,
PRIMARY KEY (lname, fname)
);
DESCRIBE TABLE users; -- only for 4.0+
CREATE TABLE foo (
pkey text,
okey text,
PRIMARY KEY ((pkey), okey) -- different partition and ordering
-- add WITH CLUSTERING ORDER BY (okey DESC) for descending
); -- add WITH cdc = { 'enabled' = true, preimage = 'true' }
DESC SCHEMA; -- show all tables and materialized views
title text,
PRIMARY KEY (lname, fname)
);
DESCRIBE TABLE users; -- only for 4.0+
CREATE TABLE foo (
pkey text,
okey text,
PRIMARY KEY ((pkey), okey) -- different partition and ordering
-- add WITH CLUSTERING ORDER BY (okey DESC) for descending
); -- add WITH cdc = { 'enabled' = true, preimage = 'true' }
DESC SCHEMA; -- show all tables and materialized views
To upsert, use insert or update command (last write wins):
INSERT INTO users (fname, lname, title)
VALUES ('A', 'B', 'C');
INSERT INTO users (fname, lname, title)
VALUES ('A', 'B', 'D'); -- add IF NOT EXISTS to prevent replace
SELECT * FROM users; -- USING TIMEOUT XXms
SELECT * FROM users; -- USING TIMEOUT XXms
UPDATE users SET title = 'E' WHERE fname = 'A' AND lname = 'C';
SELECT * FROM users; -- add IF EXISTS to prevent insert
# INSERT INTO users( ... ) VALUES ( ... ) USING TTL 600
# UPDATE users USING TTL 600 SET ...
# SELECT TTL(fname) FROM users WHERE ...
-- set TTL to 0 to remove TTL
SELECT * FROM users; -- add IF EXISTS to prevent insert
# INSERT INTO users( ... ) VALUES ( ... ) USING TTL 600
# UPDATE users USING TTL 600 SET ...
# SELECT TTL(fname) FROM users WHERE ...
-- set TTL to 0 to remove TTL
-- column will be NULL if TTL became 0
-- whole row will be deleted if all non-PK column TTL is zero
# ALTER TABLE users WITH default_time_to_live = 3600;
# SELECT * FROM users LIMIT 3
# SELECT * FROM users PER PARTITION LIMIT 2
# SELECT * FROM users PER PARTITION LIMIT 1 LIMIT 3
CREATE TABLE stats(city text PRIMARY KEY,total COUNTER);
UPDATE stats SET total = total + 6 WHERE city = 'Kuta';
SELECT * FROM stats;
# ALTER TABLE users WITH default_time_to_live = 3600;
# SELECT * FROM users LIMIT 3
# SELECT * FROM users PER PARTITION LIMIT 2
# SELECT * FROM users PER PARTITION LIMIT 1 LIMIT 3
CREATE TABLE stats(city text PRIMARY KEY,total COUNTER);
UPDATE stats SET total = total + 6 WHERE city = 'Kuta';
SELECT * FROM stats;
To change the schema, use usual alter table command:
ALTER TABLE users ADD mname text;
-- tinyint, smallint, int, bigint (= long)
-- variant (= the real bigint)
-- float, double
-- decimal
-- text/varchar, ascii
-- timestamp
-- date, time
-- uuid
-- timeuuid (with mac address, conflict free, set now())
-- boolean
-- inet
-- counter
-- set<type> (set {val,val}, +{val}, -{val})
-- list<type> (set [idx]=, [val,val], +[], []+, -[], DELETE [idx])
-- map<type,type> (set {key: val}, [key]=, DELETE [key] FROM)
-- tuple<type,...> (set (val,...))>
SELECT * FROM users;
-- tinyint, smallint, int, bigint (= long)
-- variant (= the real bigint)
-- float, double
-- decimal
-- text/varchar, ascii
-- timestamp
-- date, time
-- uuid
-- timeuuid (with mac address, conflict free, set now())
-- boolean
-- inet
-- counter
-- set<type> (set {val,val}, +{val}, -{val})
-- list<type> (set [idx]=, [val,val], +[], []+, -[], DELETE [idx])
-- map<type,type> (set {key: val}, [key]=, DELETE [key] FROM)
-- tuple<type,...> (set (val,...))>
SELECT * FROM users;
UPDATE users SET mname = 'F' WHERE fname = 'A' AND lname = 'D';
-- add IF col=val to prevent update (aka lightweight transaction)
-- IF NOT EXISTS
--
SELECT * FROM users; -- add IF col=val to prevent update (aka lightweight transaction)
-- IF NOT EXISTS
--
Complex nested type example from this page:
CREATE TYPE phone (
country_code int,
number text,
);
CREATE TYPE address (
street text,
city text,
zip text,
phones map<text, frozen<phone>> -- must be frozen, cannot be updated
);
CREATE TABLE pets_v4 (
name text PRIMARY KEY,
addresses map<text, frozen<address>>
);
INSERT INTO pets_v4 (name, addresses)
VALUES ('Rocky', {
'home' : {
street: '1600 Pennsylvania Ave NW',
city: 'Washington',
zip: '20500',
phones: {
'cell' : { country_code: 1, number: '202 456-1111' },
'landline' : { country_code: 1, number: '202 456-1234' }
}
},
'work' : {
street: '1600 Pennsylvania Ave NW',
city: 'Washington',
zip: '20500',
phones: { 'fax' : { country_code: 1, number: '202 5444' } }
}
});
CREATE TYPE phone (
country_code int,
number text,
);
CREATE TYPE address (
street text,
city text,
zip text,
phones map<text, frozen<phone>> -- must be frozen, cannot be updated
);
CREATE TABLE pets_v4 (
name text PRIMARY KEY,
addresses map<text, frozen<address>>
);
INSERT INTO pets_v4 (name, addresses)
VALUES ('Rocky', {
'home' : {
street: '1600 Pennsylvania Ave NW',
city: 'Washington',
zip: '20500',
phones: {
'cell' : { country_code: 1, number: '202 456-1111' },
'landline' : { country_code: 1, number: '202 456-1234' }
}
},
'work' : {
street: '1600 Pennsylvania Ave NW',
city: 'Washington',
zip: '20500',
phones: { 'fax' : { country_code: 1, number: '202 5444' } }
}
});
To create index (since Cassandra only allows retrieve by partition and cluster key or full scan):
CREATE INDEX ON users(title); -- global index (2 hops per query)
SELECT * FROM users WHERE title = 'E';
DROP INDEX users_title_idx;
SELECT * FROM users WHERE title = 'E' ALLOW FILTERING; -- full scan
CREATE INDEX ON users((lname),title); -- local index (1 hop per query)
SELECT * FROM users WHERE title = 'E';
DROP INDEX users_title_idx;
SELECT * FROM users WHERE title = 'E' ALLOW FILTERING; -- full scan
CREATE INDEX ON users((lname),title); -- local index (1 hop per query)
To create a materialized view (that works similar to Clickhouse's materialized view):
CREATE MATERIALIZED VIEW users_by_title AS
SELECT * -- ALTER TABLE will automatically add this VIEW too
FROM users
WHERE title IS NOT NULL
AND fname IS NOT NULL
AND lname IS NOT NULL
PRIMARY KEY ((title),lname,fname);
SELECT * FROM users_by_title;
INSERT INTO users(lname,fname,title) VALUES('A','A','A');
SELECT * FROM users_by_title WHERE title = 'A';
DROP MATERIALIZED VIEW users_by_title;
-- docker exec -it NodeZ nodetool viewbuildstatus
SELECT * -- ALTER TABLE will automatically add this VIEW too
FROM users
WHERE title IS NOT NULL
AND fname IS NOT NULL
AND lname IS NOT NULL
PRIMARY KEY ((title),lname,fname);
SELECT * FROM users_by_title;
INSERT INTO users(lname,fname,title) VALUES('A','A','A');
SELECT * FROM users_by_title WHERE title = 'A';
DROP MATERIALIZED VIEW users_by_title;
-- docker exec -it NodeZ nodetool viewbuildstatus
To create "transaction" use BATCH statement:
BEGIN BATCH;
INSERT INTO ...
UPDATE ...
DELETE ...
APPLY BATCH;
INSERT INTO ...
UPDATE ...
DELETE ...
APPLY BATCH;
To import from file, use COPY command:
COPY users FROM 'users.csv' WITH HEADER=true;
Tips for performance optimization:
1. for multi-DC use LocalQuorum on read, and TokenAware+DCAwareRoundRobin to prevent reading from nodes on different DC
1. for multi-DC use LocalQuorum on read, and TokenAware+DCAwareRoundRobin to prevent reading from nodes on different DC
2. ALLOW FILTERING if small number of records low cardinality (eg. values are true vs false only) -- 0 hop
3. global INDEX when primary key no need to be included, and latency doesn't matter (2 hops)
4. local INDEX for when primary key can be included (1 hops)
5. MATERIALIZED VIEW when want to use different partition for the same data, and storage doesn't matter
6. always use prepared statement
No comments:
Post a Comment
THINK: is it True? is it Helpful? is it Inspiring? is it Necessary? is it Kind?