2020-12-22

String Associative Array and CombSort Benchmark 2020 Edition

5 Years later since last string associative benchmark and lesser string associative benchmark (measuring string concat operation and built-in associative array set and get), numeric comb sort benchmark and string comb sort benchmark (measuring basic array random access, string conversion, and array swap for number and string), this year's using newer processor: AMD Ryzen 3 3100 running on 64-bit Ubuntu 20.04. Now with 10x more data to hopefully make the benchmark runs 10x slower (at least 1 sec), best of 3 runs.

alias time='/usr/bin/time -f "\nCPU: %Us\tReal: %es\tRAM: %MKB"'

$ php -v
PHP 7.4.3 (cli) (built: Oct  6 2020 15:47:56) ( NTS )

$ time php assoc.php 
637912 641149 67002
3808703 14182513 2343937
CPU: 1.25s      Real: 1.34s     RAM: 190644KB

$ python3 -V
Python 3.8.5

$ time python3 dictionary.py
637912 641149 67002
3808703 14182513 2343937
CPU: 5.33s      Real: 5.47s     RAM: 314564KB

$ ruby3.0 -v
ruby 3.0.0p0 (2020-12-25 revision 95aff21468) [x86_64-linux-gnu]

$ time ruby3.0 --jit hash.rb 
637912 641149 67002
3808703 14182513 2343937
CPU: 6.50s      Real: 5.94s     RAM: 371832KB

$ go version
go version go1.14.7 linux/amd64

$ time go run map.go
637912 641149 67002
3808703 14182513 2343937
CPU: 1.79s      Real: 1.56s     RAM: 257440KB

$ node -v       
v14.15.2

$ time node object.js
637912 641149 67002
3808703 14182513 2343937
CPU: 2.24s      Real: 2.21s     RAM: 326636KB

$ luajit -v 
LuaJIT 2.1.0-beta3 -- Copyright (C) 2005-2017 Mike Pall. http://luajit.org/

$ time luajit table.lua
637912  641149  67002
3808703 14182513        2343937
CPU: 4.11s      Real: 4.22s     RAM: 250828KB

$ dart --version
Dart SDK version: 2.10.4 (stable) (Unknown timestamp) on "linux_x64"

$ time dart map.dart
637912 641149 67002
3808703 14182513 2343937
CPU: 2.99s      Real: 2.91s     RAM: 385496KB

$ v version
V 0.2 36dcace

$ time v run map.v
637912, 641149, 67002
3808703, 14182513, 2343937
CPU: 4.79s      Real: 5.28s     RAM: 1470668KB

$ tcc -v
tcc version 0.9.27 (x86_64 Linux)

$ time tcc -run uthash.c
637912 641149 67002
3808703 14182513 2343937
Command exited with non-zero status 25

CPU: 2.52s      Real: 2.61s     RAM: 291912KB

export GOPHERJS_GOROOT="$(go1.12.16 env GOROOT)"
$ npm install --global source-map-support

$ goperjs version
GopherJS 1.12-3

$ time gopherjs 
637912 641149 67002
3808703 14182513 2343937

CPU: 14.13s     Real: 12.01s    RAM: 597712KB

$ java -version
java version "14.0.2" 2020-07-14
Java(TM) SE Runtime Environment (build 14.0.2+12-46)
Java HotSpot(TM) 64-Bit Server VM (build 14.0.2+12-46, mixed mode, sharing)

$ time java hashmap.java
637912 641149 67002
3808703 14182513 2343937

CPU: 5.18s      Real: 1.63s     RAM: 545412KB

The result shows a huge improvement for PHP since the old 5.4. NodeJS also huge improvement compared to old 0.10. The rest is quite bit the same. Also please keep note that Golang and V includes build/compile time not just run duration, and it seems V performance really bad when it comes to string operations (the compile itself really fast, less than 1s for 36dcace -- using gcc 9.3.0). 
Next we're gonna benchmark comb sort implementation. But this time we use jit version of ruby 2.7, since it's far way faster (19s vs 26s and 58s vs 66s for string benchmark), for ruby 3.0 we always use jit version since it's faster than non-jit. In case for C (TCC) which doesn't have built-in associative array, I used uthash, because it's the most popular. TinyGo does not complete first benchmark after more than 1000s, sometimes segfault. XS Javascript engine failed to give correct result, engine262 also failed to finish within 1000s.

LanguageCommand FlagsVersionAssocRAMNum CombRAMStr CombRAMTotalRAM
Gogo run1.14.71.56257,4400.7382,8444.74245,4327.03585,716
Gogo run1.15.61.73256,6200.7882,8964.86245,4687.37584,984
Nimnim r -d:release --gc:arc1.4.21.56265,1720.7979,2845.77633,6768.12978,132
Nimnim r -d:release --gc:orc1.4.21.53265,1600.9479,3805.83633,6368.30978,176
Javascriptnode14.15.22.21327,0480.87111,9726.13351,5209.21790,540
Crystalcrystal run --release0.35.11.81283,6481.44146,7006.09440,7969.34871,144
Javascript~/.esvu/bin/v88.9.2011.77177,7480.89105,4166.71335,2369.37618,400
Ctcc -run0.9.272.61291,9121.4580,8326.40393,35210.46766,096
Javajava14.0.2 2020-07-141.63545,4121.50165,8647.69743,57210.821,454,848
Nimnim r -d:release1.4.21.91247,4560.9679,4768.381,211,11611.251,538,048
Dartdart2.10.42.91385,4961.61191,9167.31616,71611.831,194,128
Pythonpypy7.3.1+dfsg-22.19331,7762.83139,7408.04522,64813.06994,164
Javascript~/.esvu/bin/chakra1.11.24.02.73487,4001.27102,19211.27803,16815.271,392,760
Javascript~/.esvu/bin/jsc2711175.90593,6240.68111,9729.09596,08815.671,301,684
Vv -prod run0.2 32091dd gcc-10.24.781,469,9321.8679,37614.061,560,51620.703,109,824
Lualuajit2.1.0-beta34.11250,8283.76133,42412.91511,19620.78895,448
Javascript~/.esvu/bin/smJavaScript-C86.0a15.61378,0641.4096,48013.81393,37620.82867,920
Vv -prod run0.2 32091dd gcc-9.35.051,469,9362.1479,40814.621,560,48421.813,109,828
Javascript~/.esvu/bin/graaljsCE Native 20.3.07.78958,3804.45405,90014.31911,22026.542,275,500
Gogopherjs run1.12-3 (node 14.15.2)11.76594,8962.04119,60418.46397,39632.261,111,896
Nimnim r1.4.26.60247,4443.0579,33231.851,211,20841.501,537,984
PHPphp7.4.31.34190,64410.11328,45234.51641,66445.961,160,760
Rubytruffleruby21.1.0-dev-c1517c5514.542,456,1563.09453,15229.273,660,28446.906,569,592
Crystalcrystal run0.35.15.69284,32812.00153,82831.69441,74049.38879,896
Javascript~/.esvu/bin/quickjs2020-11-083.90252,48423.4880,77234.80471,62462.18804,880
Vv run0.2 36dcace gcc-9.35.281,470,6686.6080,23258.991,561,17670.873,112,076
Lualua5.3.35.98366,51627.26264,64846.05864,30079.291,495,464
Rubyruby2.7.0p06.31371,45619.29100,53658.82694,56084.421,166,552
Pythonpython33.8.55.47314,56433.96404,97647.79722,82087.221,442,360
Rubyjruby9.2.9.07.451,878,18434.111,976,84459.837,115,448101.3910,970,476
Rubyruby3.0.0p05.94371,83224.8792,84474.321,015,096105.131,479,772
Gotinygo run0.16.0999.99318,1483.68300,548252.34711,3401256.011,330,036

Golang still the winner (obviously, since it's compiled), then Nim (Compiled), next best JIT or interpreter is NodeJS, Crystal (Compiled, not JIT), v8, followed Java, by TCC (Compiled) Dart, PyPy, V (Compiled, not JIT), LuaJIT, PHP, Ruby, and Python3. The recap spreadsheet can be accessed here

FAQ:
1. Why you measure the compile duration too? because developer experience also important (feedback loop), at least for me.
2. Why not warming up the VM first? each implementation have it's own advantage and disadvantage.
3. Why there's no C++, VB.NET, C#, D, Object-Pascal? don't want to compile things (since there's no build and run command in one flag).  
4. Why there's no Kotlin, Scala, Rust, Pony, Swift, Groovy, Julia, Crystal, or Zig? Too lazy to add :3 you can contribute tho (create a pull request, then I'll run the benchmark again as preferabbly as there's precompiled binary/deb/apt/ppa repository for the compiler/interpreter).

Contributors
ilmanzo (Nim, Crystal, D)

2020-11-23

Tarantool: In-memory SQL Hybrid Database

Tarantool is an awesome product that I've evaded for a while (because it's using Lua), but after a long time seeking a awesome free silver-bullet database (2016's benchmark here), I think only Tarantool fits the bill (so I need to learn about Lua 5.1 first since Tarantool uses LuaJIT that implements Lua 5.1 and some part of Lua 5.2). The benefits of using Tarantool are:
  • ACID Transaction, like standard RDBMS and Aerospike
  • Replication, very easy load balance, like Aerospike, Redis, etc
  • On-Disk Persistence, like Redis Enterprise, Aerospike, KeyDB Pro
  • Extension Modules, like Redis (RediGraph, RediSearch, RediSQL, etc)
  • Can use SQL, so no need to learn new language, unlike MongoDB, ArangoDB, or databases that only support partial/subset of SQL: ScyllaDB CQL and GridDB TQL, eg. no WHERE-IN.
  • Combining both in-memory and disk storage, like paid version of Redis, KeyDB
  • Can use Go :3 unlike GridDB that only have partial support
  • Extremely customizable using Lua, even on the server part
  • Less memory requirement when using vinyl engine (for large datasets that are larger than RAM) compared to in-memory solutions like Aerospike (64 byte per key requirement) or Redis swap,  sacrificing the I/O performance.
Some of the cons of using Tarantool is that you cannot prepend or drop fields/column, you can only append and the field should be nullable until ever rows have all values.
To install Tarantool on ubuntu (without Docker) you can use these commands:

curl -L https://tarantool.io/odVEwx/release/2.4/installer.sh | bash
curl -L https://tarantool.io/odVEwx/live/2.5/installer.sh | bash
sudo apt install tarantool
sudo systemctl enable tarantool
sudo systemctl start tarantool
netstat -antp | grep 3301

If it doesn't work or stuck just ctrl-C the curl script then install manually from these repo:

echo '
deb https://download.tarantool.org/odVEwx/tarantool/2.5/ubuntu/ focal main
deb-src https://download.tarantool.org/odVEwx/tarantool/2.5/ubuntu/ focal main
deb https://download.tarantool.org/tarantool/modules/ubuntu/ focal main
deb-src https://download.tarantool.org/tarantool/modules/ubuntu/ focal main
' | sudo tee -a /etc/apt/sources.list.d/tarantool_2_5.list
sudo apt update
sudo apt install tarantool

To connect to existing tarantool, we can use this command:

tarantoolctl connect 3301

-- create "table"
s = box.schema.space.create('tester')
-- s equal to box.space.tester

-- create "schema"
s:format({
  {name = 'id', type = 'unsigned'},
  {name = 'band_name', type = 'string'},
  {name = 'year', type = 'unsigned'}
})

-- create primary index
s:create_index('primary', {
  type = 'hash',
  parts = {'id'}
})

-- insert records
s:insert{1, 'Roxette', 1986}
s:insert{2, 'Scorpions', 2015}
s:insert{3, 'Ace of Base', 1993}

-- query using primary index
s:select{3}

-- create secondary index
s:create_index('secondary', {
  type = 'hash',
  parts = {'band_name'}
})

-- query using secondary index
s.index.secondary:select{'Scorpions'}

-- grant guest user to access anywhere
box.schema.user.grant('guest', 'read,write,execute', 'universe')

-- reset the admin password, only when listen, 
-- eg. from /etc/tarantool/instances.enabled/example.lua
box.schema.user.passwd('pass')

-- alter table 
box.space.tester:format({
  {name = 'id', type = 'unsigned'},
  {name = 'band_name', type = 'string'},
  {name = 'year', type = 'unsigned'},
  {name = 'rate', type = 'unsigned', is_nullable=true}})

-- update record id=1, 4th column to 5
box.space.tester:update(1, {{'=', 4, 5}})

-- update record id=2, 4th column to 4
box.space.tester:update(2, {{'=', 4, 4}})

-- search id>1
box.space.tester:select(1, {iterator = 'GT'})
-- can be LT, LE, EQ, REQ (reverse equal), GE, GT.
-- must have TREE index

Next, how to connect from golang? We need to install first go-tarantoll library:

go get -u -v github.com/tarantool/go-tarantool
# or: go get -u -v github.com/viciious/go-tarantool

Next let's create a go file:

package main
import (
    "log"
    "fmt"
    "github.com/tarantool/go-tarantool"
)
func main() {
    conn, err := tarantool.Connect("127.0.0.1:3301", tarantool.Opts{
        User: "guest",
        Pass: "",
    })
    if err != nil {
        log.Fatalf("Connection refused "+err.Error())
    }
    defer conn.Close()

    // insert
    resp, err := conn.Insert("tester", []interface{}{4, "ABBA", 1972})
    fmt.Printf("Insert: %#v %v\n",resp.Data,err)

    // select offset=0, limit=1
    resp, err = conn.Select("tester", "primary", 0, 1, tarantool.IterEq, []interface{}{4})
    fmt.Printf("Select: %#v %v\n",resp.Data,err)
    resp, err = conn.Select("tester","secondary", 0, 1, tarantool.IterEq, []interface{}{"ABBA"})
    fmt.Printf("Select: %#v %v\n",resp.Data,err)

    // update col 2 by 3
    resp, err = conn.Update("tester", "primary", []interface{}{4}, []interface{}{[]interface{}{"+", 2, 3}})
    fmt.Printf("Update: %#v %v\n",resp.Data,err)

    // replace
    resp, err = conn.Replace("tester", []interface{}{4, "New band", 2011})
    fmt.Printf("Replace: %#v %v\n",resp.Data,err)

    // upsert: update increment col 2 by 5, or insert if not exists
    // does not return data back
    resp, err = conn.Upsert("tester", []interface{}{4, "Another band", 2000}, []interface{}{[]interface{}{"+", 2, 5}})
    fmt.Printf("Upsert: %#v %v\n",resp.Data,err)

    // delete
    resp, err = conn.Delete("tester", "primary", []interface{}{4})
    fmt.Printf("Delete: %#v %v\n",resp.Data,err)

    // call directly, do not add () when calling
    resp, err = conn.Call("box.space.tester:count", []interface{}{})
    fmt.Printf("Call: %#v %v\n",resp.Data,err)

    // eval Lua 
    resp, err = conn.Eval("return 4 + 5", []interface{}{})
    fmt.Printf("Eval: %#v %v\n",resp.Data,err)
}

It would give an output something like this:

Insert: []interface {}{[]interface {}{0x4, "ABBA", 0x7b4}} <nil>
Select: []interface {}{[]interface {}{0x4, "ABBA", 0x7b4}} <nil>
Select: []interface {}{[]interface {}{0x4, "ABBA", 0x7b4}} <nil>
Update: []interface {}{[]interface {}{0x4, "ABBA", 0x7b7}} <nil>
Replace: []interface {}{[]interface {}{0x4, "New band", 0x7db}} <nil>
Upsert: []interface {}{} <nil>
Delete: []interface {}{[]interface {}{0x4, "New band", 0x7e0}} <nil>
Call: []interface {}{[]interface {}{0x3}} <nil>
Eval: []interface {}{0x9} <nil>

See more info here and APIs here. Next you can use cartridge to manage the cluster.
Each row/tuple in Tarantool stored as MsgPack and when displayed in console it uses YAML format. TREE is the default index in tarantool engine, memtx engine support few more: HASH, RTREE, BITSET. The TREE or HASH may only index certain types: integer, number, double, varbinary, boolean, uuid, scalar (null, bool, integer, double, decimal, string, varbinary). TREE or HASH or BITSET may only index string and unsigned. RTREE may only index array type. If we have multiple parts/columns on TREE index, we can do partial search starting from starting column of the index. When using string index, we may specify the collation (ordering): unicode or unicode_ci (case ignore, also ignore accented/diacritic alphabet). Sequence can be accessed through box.schema.sequence.create() with options (start, min, max, cycle, step, if_not_exists), we could call next method to get next value. Tarantool persist data in two modes: WAL and snapshot (can be forced using box.snapshot()). List of available operators for update/upsert:
  • + to add, - to subtract
  • & bitwise and, | bitwise or,  ^ bitwise xor
  • : string splice
  • ! insertion of a new field
  • # deletion
  • = assignment
This snippet shows how to update table and check it:

r, err := conn.Call(`box.schema.space.create`, []interface{}{TableName})
if err != nil {
  if err.Error() != `Space '`+TableName+`' already exists (0xa)` {
    log.Println(err)
    return
  }
}
fmt.Println(r.Tuples())
fmt.Println(`---------------------------------------------------`)
r, err = conn.Call(`box.space.`+TableName+`:format`, []interface{}{
  []map[string]interface{}{
    {`name`: `id`, `type`: `unsigned`},
    {`name`: `name`, `type`: `string`},
  },
})
if err != nil {
  log.Println(err)
  return
}
fmt.Println(r.Tuples())
r, err = conn.Call(`box.space.`+TableName+`:format`, []interface{}{})
if err != nil {
  log.Println(err)
  return
}
fmt.Println(r.Tuples())


func ExecSql(conn *tarantool.Connection, query string, parameters ...M.SX) map[interface{}]interface{} {
  params := A.X{query}
  for _, v := range parameters {
    params = append(params, v)
  }
  L.Describe(params)
  res, err := conn.Call(`box.execute`, params)
  if L.IsError(err) {
    L.Describe(`ERROR ExecSql !!! ` + err.Error())
    L.DescribeSql(query, parameters)
    L.Describe(err.Error())
    return map[interface{}]interface{}{`error`: err.Error()}
  }
  tup := res.Tuples()
  if len(tup) > 0 {
    if len(tup[0]) > 0 {
      if tup[0][0] != nil {
        kv, ok := tup[0][0].(map[interface{}]interface{})
        // row_count for UPDATE
        // metadata, rows for SELECT
        if ok {
          return kv
        }
      }
    }
  }
  // possible error
  if len(tup) > 1 {
    if len(tup[1]) > 0 {
      if tup[1][0] != nil {
        L.Describe(`ERROR ExecSql syntax: ` + X.ToS(tup[1][0]))
        L.Describe(query, parameters)
        L.Describe(tup[1][0])
        return map[interface{}]interface{}{`error`: tup[1][0]}
      }
    }
  }
  return map[interface{}]interface{}{}
}

func QuerySql(conn *tarantool.Connection, query string, callback func(row A.X), parameters ...M.SX) []interface{} {
  kv := ExecSql(conn, query, parameters...)
  rows, ok := kv[`rows`].([]interface{})
  if ok {
    for _, v := range rows {
      callback(v.([]interface{}))
    }
    return rows
  }
  return nil
}


The tarantool have some limitations:
  • no datetime (use unsigned if greater than 1970-01-01)
  • can only append column at the end, cannot delete column
  • cannot alter datatype, except if there’s no data yet
  • alter table when there’s data exists must have not_null=true flag 
Tarantool SQL limitations and gotchas:
  • table names or column names must be quoted or they will be automatically capitalized (and then error column/space=table not found)
  • concat just like postgresql (|| operator), but you must convert both operands to string first 
  • does not support right join (not needed anyway), can do natural join or left join, also support foreign key
  • no date/time data type/functions (tarantool problem)
  • NULLIF (tarantool), IFNULL (mysql), COALESCE (standard SQL) all works normally
  • cannot run alter table add column (must use APIs)
  • no information_schema
  • calling box.execute to execute SQL (supported since version 2.x), the result is on first row (row_count for UPDATE, metadata and rows for SELECT), the error is on second row.
I think that's it for now, to learn Lua (needed for stored procedure) you can use official documentation. For example project using Tarantool and Meilisearch, you can clone kmt1 dummy project.